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The spreading and sediment deposit of a two-dimensional, unsteady, laminar mud flow
from a constant-volume source on a relatively steep slope is studied theoretically and
experimentally. The mud under consideration has the rheological properties of a
Herschel–Bulkley fluid. The flow is of low-Reynolds-number type and has a well-
formed wave front moving a substantial distance downslope. Due to the nonlinear
rheological characteristics, a set of nonlinear partial differential equations is needed for
this transient problem. Depth-integrated continuity and momentum equations are
derived by applying von Ka! rma! n’s momentum integral method. A matched-asymptotic
perturbation method is implemented analytically to get asymptotic solutions for both
the outer region away from, and the inner region near, the wave front. The outer
solution gives accurate results for spreading characteristics, while the inner solution,
which is shown to agree well with experimental results of Liu & Mei (1989) for a
Bingham fluid, predicts fairly well the free-surface profile near the wave front. A
composite solution uniformly valid over the whole spreading length is then achieved
through a matching of the inner and outer solutions in an overlapping region. The
range of accuracy of the solution and the size of the inner and overlapping regions are
quantified by physical scaling analyses. Rheological and dynamic measurements are
obtained through laboratory experiments. Theoretical predictions are compared with
experimental results, showing reasonable agreement. The impact of shear thinning on
the runout characteristics, free-surface profiles and final deposit of the mud flow is
examined. A mud flow with shear thinning spreads beyond the runout distance
estimated by a Bingham model, and has a long and thin deposit.

1. Introduction

Mud flows are commonly observed in mountainous areas after long or intense rainy
periods, inflicting significant topographical changes when debouching over the
associated alluvial fans (Johnson 1970; Li et al. 1983; Costa & Williams 1984;
Takahashi 1991). These flows also occur frequently as mud-slides on submarine
continental slopes where they play an important role in geological processes (Hampton,
Lee & Locat 1996; Huang & Garcı!a 1998). Therefore, it is of interest to be able to
predict the characteristics (e.g. runout extent) of mud flows and their deposits for
geophysical and engineering purposes. To this end, complete, proper, constitutive
relations for muds must be taken into account as well as appropriate boundary and
initial conditions.

Rheological studies of mud at high enough solid concentrations have shown that it
is a very viscous, non-Newtonian fluid (Krone 1963; Migniot 1968; Wan 1982;
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Bingham plastic
(Wan 1982)

Herschel–Bulkley
(present study)

Cases
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v

(%)
τ
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µ
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τ
y

(N m−#)
µ

(N m−# sn) n

(1) 14.9 5.178 0.00889 2.800 0.910 0.30
(2) 12.6 2.764 0.00638 2.100 0.090 0.59
(3) 10.5 1.424 0.00488 0.875 0.095 0.54
(4) 7.4 0.499 0.00358 0.085 0.080 0.50

τ
y

is the yield stress, µ the kinematic viscosity and n is given by (2.10).

T 1. Rheological parameters for kaolinite suspension (Wan 1982)

Coussot 1994), exhibiting a yield stress as evidenced by an observed minimum depth
needed for a uniform layer of mud to flow. Various rheological models have been
proposed (e.g. Bird, Dai & Yarusso 1983), and the most often used one for the shear
rate range seen in natural rivers and on alluvial fans (Johnson 1970; Qian & Wan 1986)
is the Bingham plastic model (also called linear viscoplastic model). Following
numerous field studies, Qian & Wan (1986) indicated that the shear rate of a high-
density mud flow in natural rivers is generally no more than 100 s−" and this should be
kept in mind when using data from rheological measurements. This is true for a lava
flow or a mud flow at a decelerating stage on an alluvial fan. For example, Li et al.
(1983) measured the following data for a mud flow in Jiang-jia Ravine, China: density
ρ¯ 2.13 g cm−$, slope sin θ¯ 0.06, depth h¯ 1.4 m, surface velocity u(h)¯ 8.0 m s−",
and yield stress τ

y
¯ 2000–3000 dynes cm−#. A Bingham plastic simulation (Huang &

Garcı!a 1997b) estimates a kinematic viscosity µ}ρE 0.047 m# s−", a basal shear rate
E 15 s−", a depth-averaged velocityE 5.7 m s−", a Reynolds numberE 500, and a
Froude numberE 1.5. However, very large shear rates are bound to exist in mud flows
at the accelerating stage in mountainous areas. Also, it has been found that yielded mud
may experience shear thinning at low shear stress level, i.e. its viscosity decreases
gradually with the increase of shear rate. This is probably because the destruction of the
internal structure responsible for the yield behaviour is a gradual process, during which
the resistance to deformation becomes weaker, and is not completed until a high shear
stress level is reached. Therefore, a Bingham plastic model may overestimate the true
yield stress significantly due to the shear thinning at low shear rates (Wan 1982;
O’Brien & Julien 1988), and muds with high solid concentrations generally experience
more severe shear thinning than those with low solid concentrations (see table 1 and
figure 1). A Herschel–Bulkley model (also called a nonlinear viscoplastic model, see
Coussot 1997) seems to be more appropriate in depicting this particular behaviour and
is found to fit rheological data very well over a wide range of shear rates (figure 1).

In simple shear, the stress and strain relation for a Herschel–Bulkley fluid in laminar
flows is

µ
n)¥u¥y)

n

sgn 0¥u¥y1¯
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0 if rτr! τ
y
,

τ®τ
y
sgn 0¥u¥y1 if rτr& τ

y

(1.1)

where τ is the shear stress, τ
y
is the yield stress, µ

n
is the dynamic viscosity of dimension

[ML−"Tn−#], and n is the flow index ranging between 0 and 1 for a shear-thinning fluid.
The upper limit of n¯ 1 corresponds to a Bingham plastic fluid, and µ

"
is the regular

dynamic viscosity. The existence or non-existence of the yield stress has recently been
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F 1. The rheological measurements for kaolinite suspension (Wan 1982), fitted by the
Herschel–Bulkley model.

the subject of discussion (e.g. Barnes & Walters 1985; Evans 1992; Schurz 1992; Kee
& Fong 1993; Spanns & Williams 1995). It is true that dense muds deform, however
slowly, under the action of small shear stresses. However, Nguyen & Boyer (1992)
questioned the measurements by Barnes & Walters in that all rheometers suffer wall
slip and other side effects (e.g. particle dispersion) especially at low shear rates and for
yield-stress fluids and particle suspensions. They further pointed out that, under
common conditions of observation, there generally exists an abrupt turn in the
deformation rate of dense mud from an elastic}plastic solid behaviour to a viscous
fluid behaviour, when shear stress exceeds a certain value that we can call the yield
stress. Nevertheless, there must be fluid materials (e.g. dilute clay suspensions) which
do not possess yield stress and may follow a power law (Ng & Mei 1994), and this can
be treated as a special case of a Herschel–Bulkley model. The yield stress may lead to
two fluid regions: a sheared one with τ" τ

y
and varying velocity, and an unsheared one

with τ% τ
y

and uniform velocity, for flows in simple geometries (Lipscomb & Denn
1984; Piau 1996). The dynamic problem of a yield-stress fluid flow has the interface
between the two regions as a boundary condition unknown a priori, whose location has
to be determined together with other unknowns (Bird et al. 1983; Crochet & Walters
1983).

Although there has been substantial research carried out on free-surface flows of
Newtonian viscous fluids, much less has been done for yield-stress fluids, either
experimentally or theoretically, with most of the work concentrating on flows in simple
geometries and steady state or transient slow motions (Liu & Mei 1989, 1990; Coussot
1997). Linear instability analyses of uniform flows of dense mud include Engelund &
Wan (1984), Trowbridge (1987), Hjorth (1990), Liu & Mei (1994), and Ng & Mei
(1994). Recently, the slow, unconfined spreading of a mud flow coming out of a narrow
open channel was investigated using a three-dimensional form of the constitutive
equation (Coussot & Proust 1996). The form of the deposits remaining after a free-
surface flow stops was found to be a function of fluid characteristics (Coussot, Proust
& Ancey 1996). More recently, the propagation of a constant-volume mud source
encountered in a dam-break or mud-slide problem was analysed by using the matched-
asymptotic perturbation method (Huang & Garcı!a 1997b). In this last problem,
however, the effect of shear thinning (i.e. the flow index n) on the runout characteristics
and final deposits of mud flows was not studied. Shear thinning should have an impact
on flow properties which have engineering and geophysical importance. Motivated by
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this fact, the formulation corresponding to the work of Huang & Garcı!a (1997b) will
be given more rigorously in what follows for Herschel–Bulkley fluids with a focus on
the shear-thinning effects.

The mud flows being considered here are laminar flows as often encountered in
nature for highly concentrated suspensions. As far as we know, no criterion for the
transition from a laminar to a turbulent regime exists for fluids following a
Herschel–Bulkley model. But there are several empirical criteria proposed for free-
surface flows of Bingham fluids (Wilkinson 1960; Qian & Wan 1986; Naik 1983) which
may at the very least give an approximate idea of how far the flows under consideration
are from the transition zone. To this end, the criterion used by Qian & Wan (1986) for
mud flows is used by fitting the rheological data with a Bingham model :

1

Re
B

¯
1

Reτ


1

Reµ

(1.2)

with Reτ ¯ 8ρU #}τ
y

and Reµ ¯ 4ρUh}µ. (1.3)

Empirically, for a mud flow to remain laminar, Re
B

! 2100, and it will be verified a
posteriori that the mud flows considered later in this paper are indeed laminar.

In this paper, the dynamics of a mud flow which originates from a constant-volume
source on a relatively steep slope and follows the Herschel–Bulkley rheological
behaviour is formulated with the help of the boundary-layer approximations. The flow
is of low-Reynolds-number type and has a substantial runout distance. The derived
governing equations are then solved analytically by using the method of matched-
asymptotic expansions. The impact of shear thinning on the spreading characteristics,
free-surface profiles and final deposit is examined. Two special cases of the analytical
solution have been verified experimentally by previous investigations: the Bingham
model (Liu & Mei 1989; Huang & Garcı!a 1997a, b) and the Newtonian model
(Huppert 1982a, 1986; Hunt 1994). Experimental results on Herschel–Bulkley mud
flow are also shown in this study. Finally, some practical considerations concerning the
application of the solution are discussed.

2. Governing equations: boundary-layer approximations

Consider a two-dimensional, unsteady, gradually varied, laminar mud flow down a
relatively steep slope at an angle θ with respect to the horizontal. A coordinate system
(x, y) is defined as the x-axis downslope along and the y-axis upward normal to the
plane bed. The longitudinal and transverse velocity components are denoted by (u, �),
the pressure by p, and the total flow depth normal to the bed by h. The boundary-layer
approximations are assumed to be valid, i.e. the characteristic flow depth is small
relative to the characteristic flow length and the flow depth changes relatively slowly
in the longitudinal direction. Then the flow is governed by the boundary-layer
approximation equations
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where ρ is the bulk mud density, and g is the acceleration due to gravity. The boundary
conditions are

u, �¯ 0 at y¯ 0, (2.4)

p, τ¯ 0 at y¯ h, (2.5)

�¯
¥h
¥t

u
¥h
¥x

at y¯ h. (2.6)

Equations (2.3) and (2.5) indicate that the pressure in the mud flow is approximated
as hydrostatic :

p¯ ρg(h®y) cos θ. (2.7)

As described in Appendix A (2.1)–(2.7) represent the leading-order results in a
perturbation analysis.

For the case of a steady uniform flow, the flow can be divided into a plug layer
(unsheared) having velocity u¯U

p
for h

s
% y% h

s
h

p
¯ h on top of a shear layer in

which u increases from zero to U
p

as y goes from 0 to h
s
, with the yield condition

being
τ¯ τ

y
at y¯ h

s
. (2.8)

Then equations (1.1), (2.2)–(2.5), (2.7), and (2.8) give the following velocity
distribution:

u¯ (Up
,

U
p
[1®(1®y}h

s
)(n+")/n],

h
s
% y% h

0% y% h
s

(2.9)

and the depth-averaged velocity

U¯ h−"&h

!

udy¯U
p01®

n

2n1

h
s

h 1 , (2.10)

where

U
p
¯

n

n1 0
ρghn+"

s
sin θ

µ
n

1"/n. (2.11)

Profiles of u}U
p

in figure 2 show a plug layer on top of a shear layer, and small values
of n seem to have the effect of thickening the plug layer and thinning the shear layer.
The bed shear stress is given by

τ
b
¯ 0τyµ

n )n1

n

U
p

h
s

)n1 sgn(U
p
). (2.12)

It is clear that no flow occurs unless τ
p
¯ ρgh sin θ" τ

y
for Herschel–Bulkley fluids.

Equations (2.9)–(2.12) reduce to those for Bingham-plastic flows when n¯ 1 (Liu &
Mei 1989; Jiang & LeBlond 1993; Huang & Garcı!a 1997a, b), those for power-law fluid
flows when τ

y
¯ 0, h

s
¯ h, and U

p
becomes the velocity at the free surface (Ng & Mei

1994), and those for Newtonian fluid flows when τ
y
¯ 0, n¯ 1, h

s
¯ h, and U

p
becomes

the free-surface velocity (Hunt 1994).
For the case of a gradually varied boundary-layer flow, the well-known von

Ka! rma! n’s momentum integral method is applied to derive a set of nonlinear partial
differential equations that govern the flow. The depth-integrated momentum and
continuity equations are obtained in both the shear layer and the plug layer, and the
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F 2. Velocity distribution over the cross-section for a uniform flow on a rigid slope, for
different values of n. (From Coussot 1994.)

Leibnitz rule is used. Integration of (2.1) with respect to y over the shear layer, i.e. from
y¯ 0 to y¯ h

s
, gives the interfacial velocity

�
i
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p
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s
). (2.13)

Integration of (2.1) with respect to y over the entire flow depth, i.e. from y¯ 0 to h,
gives the free-surface velocity

�
i
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p

¥h
¥x

®
¥q
¥x

, (2.14)

in which q is the flow rate given by

q¯&h

!

udy. (2.15)

Substituting the kinematic boundary condition (2.6) into (2.14) yields the depth-
integrated continuity equation
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Now, integrating (2.2) with respect to y over the shear layer, i.e. from y¯ 0 to h
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Integrating (2.2) with respect to y over the plug layer, i.e. from y¯ h
s
to h yields
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Then, integration of (2.2) with respect to y over the entire flow depth, i.e. from y¯ 0
to h, yields
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From (1.1), rτ
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If (2.9) is also true for a transient and non-uniform flow without committing serious
errors, except that h and h

s
vary with t and x, it is readily obtained that
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, (2.22)

which are in the ranges of 0.67%α
"
% 1 and 0.53%α

#
% 1 for 0% n% 1.

Equations (2.16)–(2.20) constitute the governing equations for slender, laminar mud
flows following the Herschel–Bulkley model, and they reduce to those for a Bingham
model when n¯ 1 (Jiang & LeBlond 1993; Liu & Mei 1994; Huang & Garcı!a 1997a,
b). A matched-asymptotic perturbation method (Nayfeh 1973) will be employed for
their analysis next.

3. Normalization

In fact, not every term in (2.16)–(2.19) has equal significance for the flow under
consideration. To investigate the relative magnitude of the terms in these equations,
dimensionless variables are introduced by using a number of scales as follows:
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and h
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the yield depth obtained from (2.2) and given by
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which is the minimum depth for a uniform layer of mud to initiate a flow on a slope.
From (2.10), it follows that u

o
is the depth-averaged velocity for a steady, uniform

power-law fluid flow having a depth h
o
.

Introduction of the above variables in (2.16)–(2.20) yields the following dimension-
less forms of the approximate governing equations:
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and τ$
b

is the normalized value given by

τ
b
¯ τ$

b
ρgh

o
sin θ. (3.10)

The asterisk superscript has been omitted in (3.4)–(3.9) for notational convenience. The
Reynolds number effects in (3.5)–(3.7) can be discovered by defining the Reynolds
number Re as

Re¯ ρu#−n
o

hn
o
}µ

n
, (3.11)

which indicates, with the help of (3.1) and (3.2), that

Fr#

Re sin θ
¯ 0 n

2n11
n

CO(1) (3.12)

since 0.33% [n}(2n1)]n! 1 for 0! n% 1.

4. Matched-asymptotic analysis

4.1. Outer solution

The slope is assumed to be steep enough so that the conditions

ηi 1 and tan θ%O(1) (4.1a)

are easily satisfied. Both l
o
and h

o
have been selected so that all the terms in the square

brackets of (3.4)–(3.9) are of O(1). Thus, if

Fr#%O (cos θ) and Re%O(1}tan θ), (4.1b)
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then (3.4)–(3.7) reduce to the kinematic-wave approximation (Choi & Garcı!a 1993)
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in which (2.9) and (2.22) are used, U$
p

is the dimensionless velocity in the plug layer,
and sgn(U

p
)¯ 1 since the flow moves in the direction of the positive x-axis.

Substituting (4.3) and (4.4) into (2.10) gives the dimensionless averaged velocity over
the entire flow depth as

U*¯ (h*®λ)(n+")/n01
n

n1

λ

h*1 . (4.6)

Substitution of (4.3) and (4.4) into (4.2) yields
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where h* is the only unknown and (4.5) is satisfied. Equations (4.3) and (4.4) then give
approximate expressions for U$

p
and h$

s
. With the help of the chain rule, (4.7) can be

changed into two ordinary differential equations, such that

dh*

dt*
¯ 0 (4.8)

along characteristic curves

dx*

dt*
¯

2n1

n
h* (h*®λ)"/n (4.9)

in the (x*, t*)-plane. Equation (4.8) indicates that h* is constant along characteristic
curves, and (4.9) indicates that the characteristic curves are all straight lines with slopes
determined by the particular value of h* on each characteristic curve.

If the flow is assumed to be released from a point source† at x*¯ t*¯ 0, then all
of the characteristic curves with non-zero values of h* pass through this point in the
(x*, t*)-plane. Thus, (4.9) gives

x*¯
2n1

n
h*(h*®λ)"/nt*. (4.10)

Note that at the origin h*¯λ. The location of a wave front at the leading edge of the
flow can be found by requiring that the area of material in a vertical plane remains

† The point source is explained as follows. If initially h*¯ f(x*), the characteristics is given by
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(2n1) h*[h*®λ]"/nt*}n. For x*jx$

o
, this solution can be

approximated by x*¯ (2n1) h*[h*®λ]"/nt*}n.
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constant with time (Whitham 1974). Thus, if the wave front location is x*¯x$
f
(t), this

requires
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f (t
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h*dx* (4.11)

in which t* is a parameter, and the constant dimensionless area, A*, is normalized as

A*¯A}(l
o
h
o
). (4.12)

Integrating (4.11) by changing the integrating variable with the help of (4.10), yields an
implicit form for the front depth h$

f
at different times as follows:
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Setting x*¯x$
f

and h*¯ h$
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in (4.10) and eliminating t* from the resulting equation
and (4.13), gives the front location
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1−"A* (4.14)

as an explicit function of the flow depth just upstream from the wave front, h$
f
. For a

given front coordinate, flow depths at different locations can be also obtained from
(4.10) by

x*

x$
f

¯
h*(h*®λ)"/n

h$
f
(h$

f
®λ)"/n

. (4.15)

Finally, differentiating (4.10) and (4.13) with respect to t* and eliminating dh$
f
}dt*

from the resulting equations gives the propagation velocity of the wave front as

dx$
f

dt*
¯ (h$

f
®λ)(n+")/n 01

n

n1

λ

h$
f

1 . (4.16)

Comparison of (4.6) and (4.16) indicates that the wave front propagates at the same
velocity as that of the fluid just upstream from it.

Equations (4.11), (4.14), and (4.16) show that a Herschel–Bulkley flow originated
from a constant-volume source only propagates a finite distance downslope, with x$

f

asymptotically approaching A*}λ (figure 3), h* asymptotically approaching λ (figure
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F 4. Kinematic-wave shock depth plotted as function of shock coordinate for flows
from a point source. A*¯ 0.5.

4), and U$
f

asymptotically falling to zero (figure 5). The final stage of the flow is similar
to a creeping motion. The smaller the value of λ, the faster the flow will move
downslope, and the more rapidly both the front depth and the front velocity will decay
with time. The small value of n has no effect on the runout extent, but greatly slows
down the flow and the decay of both the front depth and the front velocity. The
hydrographs for Bingham (λ¯ 0.04, n¯ 1), Newtonian (λ¯ 0, n¯ 1), and Herschel–
Bulkley (λ¯ 0.04, n¯ 0.4) fluid flows at the gauging station with x}L¯ 5.5 are plotted
in figure 6. The hydrograph for the Herschel–Bulkley flow is seen to have a slower,
lower, and wider flood peak, and the decline of the peak is more gentle than in the other
two cases.

The solution given by (4.10) and (4.13)–(4.16) is a relatively simple result that has
been obtained by considering a Herschel–Bulkley fluid released from a point source. To
see the solution for a source of finite size, as an example, a dam-burst or mud-slide
problem with an initial triangular shape on a slope is considered next. It is assumed
that the sediment movement which results in the mud-slide behaving like a
Herschel–Bulkley fluid flow is homogeneous and instantaneous, that the mud mass in
the slide remains constant with time, and that the lateral length scale is many times
larger than the flow depth. By introducing the scales

l
o
¯L and h

o
¯H, (4.17)

where L and H are the maximum length and height of the initial sediment mass,
respectively, then the initial condition that is required for integration of (4.8) and (4.9)
is given by

h*(x*, 0)¯ (x*, 0%x*% 1

0, ®¢!x*! 0 or 1!x*!¢.
(4.18)

Integrating (4.8) and (4.9) with the help of (4.18) and (4.5) gives

x*¯
2n1

n
h*(h*®λ)"/nt*h*, (4.19)

which holds in the (x*, t*)-plane only, within a region covered by characteristic curves
that leave the x-axis along the interval λ%x*% 1. To prevent characteristic curves
leaving the x-axis for x*" 1 from crossing characteristic curves leaving the x-axis for
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λ%x*% 1, the front location is fixed by using mass conservation requirement, which
is similar to (4.11) and given by

A*¯&x$

f

λ

h*dx*, (4.20)

where x$
f

is the front coordinate, and A* is given by

A*¯ (1®λ#)}2. (4.21)

Integrating (4.20) by changing the integrating variable with the help of (4.19) yields an
implicit form for the flow depth just upstream from the wave front, h$

f
, at different

times,

t*¯
(1®h$#

f
)}2

0n1

n
h$#
f


1

n1
h$
f
λ

n

n1
λ#1 (h®λ)"/n

. (4.22)

The relation between the front coordinate x$
f

and h$
f

can be obtained from (4.19) and
(4.22) as

x$
f
¯
02n1

2n


1

2n
h$#
f


1

n1
h$
f
λ

n

n1
λ#1 h$

f

n1

n
h$#
f


1

n1
h$
f
λ

n

n1
λ#

. (4.23)

A plot of (4.14) and (4.23) is shown in figure 7 for λ¯ 0.04 and n¯ 0.4. Further
numerical inspection indicates that for λ% 0.1 and 0.1% n% 1, the two solutions for
the front depth, h$

f
, differ by less than 2% at x$

f
¯ 5 and become even closer farther

downstream. The wave front of the mud flow caused by the mud-slide is seen to
propagate λ}2 farther downslope than that from a point source. This corresponds to
a dimensional distance of λL}2. This is due to the fact that the fluid mass in the region
0!x*!λ, whose depth is defined by (4.10) for the flow from a point source, is
λ#LH}2 by volume larger than that in the same region in the mud-slide, which is
actually still and has a depth of xH}L. Such an artificial difference can be prevented
by moving the point source coordinate to λ}2. Thus, two significant points can be
made from the similarity of the two solutions. First, since the solutions for the point
and distributed sources are virtually identical for x$

f
" 5, there seems to be no practical

reason to use the more complicated solution for a distributed source after this point.
Secondly, since the kinematic-wave solution is independent asymptotically only on the
initially movable mass of fluid and not on the initial distribution of fluid mass, it
appears likely that an exact solution of (2.16)–(2.20) may also have an asymptotic
behaviour that has no memory of the past history of the flow. In other words, the
perturbation solution of (2.16)–(2.20) is asymptotically valid even though this solution
yields poor approximations for early time stages (Huppert 1982a).

4.2. Validity

As indicated previously in the scaling process, the kinematic-wave solution is
asymptotically valid only when (4.1a) is satisfied. If the length scales are chosen as
l
o
¯x

f
and h

o
¯ h

f
for convenience, then (4.23) can be rewritten as

η¯

n1

n
h#
f


1

n1
h
f
h
y


n

n1
h#
y

2n1

2n
H #
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2n
h#
f
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f
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y


n
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. (4.24)
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F 8. Conceptual motion of a boundary-layer flow with a front.

Now the perturbation solution is assumed to be valid when ε}tan θ% 0.05, and the
validity boundary (i.e. ε}tan θ¯ 0.05) has been plotted as circle-dot symbols in figures
3–5. Thus, the perturbation solution developed herein would provide an accurate
approximation of the physical problem for values of x

f
}l

o
that lie to the right of the

circle-dot symbols in figures 3–5. In particular, the solution for λ¯ 0 and n¯ 1
(Newtonian) becomes valid after the front passes the point x

f
}l

o
¯ 3.9, the solution

for λ¯ 0.08 and n¯ 1 (Bingham) becomes valid after the front passes the point
x
f
}l

o
¯ 3.6, and the solution for λ¯ 0.08 and n¯ 0.1 (Herschel–Bulkley) becomes

valid after the front passes the point x
f
}l

o
¯ 3.2. Non-zero values of λ and small

values of n (0! n% 1) seem to move upstream the point at which the perturbation
solution becomes valid. Since all the terms in the square brackets of (3.4)–(3.9) are
of O(1), the neglected terms in (3.4)–(3.7) are approximately within 5% of the
remaining terms. Therefore, the kinematic-wave solution is relatively accurate since,
from perturbation theory, the second-order solution is within 5% of the first-order
solution.

4.3. Inner solution

The solution given by (4.10) and (4.13)–(4.16) is the first-order outer approximation in
a singular perturbation expansion. This solution gives accurate results for the
spreading rate of low-Reynolds-number flows and the free-surface profile away from
the wave front, having an O(ε}tan θ) error after the wave front has advanced a distance
h
f
}ε downstream. However, the free-surface profile is excessively simplified near the

wave front, where the kinematic-wave approximation is not sufficient, since ¥h}¥x is
not small any more, and (3.4)–(3.7) have been scaled incorrectly.

It is noted that, after a certain distance downstream, the wave front depth varies
slowly both in time and along the downstream direction, implying that the wave front
is a quasi-permanent wave moving at a nearly constant velocity. This boundary
condition (meaning ‘those that specify the agency generating the motion of the fluid
as remarked by Batchelor 1967) indicates that the components in the x-direction are
still larger than those in the y-direction as seen in

dh
f

dt
C ε

dx
f

dt
and

d#h
f

dt#
C ε

d#x
f

dt#
. (4.25)

Mathematically, this can be proved as follows. Shown in figure 8 is a conceptual
motion of a boundary-layer flow in an infinitesimal time duration ∆t. By mass
conservation, the two cross-hatched areas should be equal, i.e.

(y®∆y)∆x¯x∆y. (4.26)

Neglecting the high-order small term ∆x∆y, (4.26) gives

∆y

∆x
¯

y

x
¯O(ε)i 1. (4.27)
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By taking the limit ∆tU 0, it is obtained that

�

u
¯ lim

∆tU!

∆y}∆t

∆x}∆t
¯

y

x
¯O(ε)i 1, (4.28)

d�}dt

du}dt
¯ lim

∆tU!

∆�}∆t

∆u}∆t
¯

y

x
¯O(ε)i 1. (4.29)

By taking a leading-order view of the motion, the wave front is a quasi-permanent
wave. Equations (4.27)–(4.29) indicate that the physical scaling for the flow near the
wave front is similar to that for the flow far away from the wave front as described in
Appendix A, the only exception being the pressure-gradient term which becomes
important. Therefore, equations (2.1)–(2.3) are still valuable near the wave front. On
the other hand, if O(x)CO(y), the motions in both x- and y-directions are important.
In lubrication theory, equations (2.1)–(2.3) have been useful approximations near the
wave front, with the inertia terms being neglected (Huppert 1982b ; Liu & Mei 1989)
when the Reynolds number is low and surface tension is negligible.

In the following, therefore, a set of inner variables is proposed to rescale (3.4)–(3.7) :

ξ*¯ (x*®x$
f
)}η, (4.30a)

h*¯ h$
i
, h$

s
¯ h$

si
, U*¯U$

i
, U$

p
¯U$

pi
, t*¯ t$

i
, τ$

b
¯ τ$

bi
(4.30b)

in a way similar to that proposed by Hunt (1994) for Newtonian-fluid debris flows.
Then, (3.4)–(3.9) become, with the asterisk superscript omitted for notational
convenience,

9 ¥
¥ξ 0hi-U
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dt .1:η 9¥hi
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:¯ 0, (4.31)
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The derivation of (4.31) is given in Appendix B. Applying (4.1a) in (4.31) and
integrating yields

h$
i 0U$

i
®

dx$
f

dt*1¯ f(t$
i
), (4.37)

where f(t$
i
) is a function of t$

i
only. The boundary condition that h$

i
vanishes at the

leading edge of the wave front for all values of t$
i

renders f(t$
i
)¯ 0. Hence,

U$
i
¯

dx$
f

dt*
, (4.38)

which shows that velocities near the wave front change only with time. Then, applying
(4.1) and (4.38) in (4.32)–(4.34) yields

h$
si

¥h$
i

¥ξ*
¯ h$

si
λ sgn(U

p
)®τ$

bi
, (4.39)
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)
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®λ sgn(U

pi
), (4.40)

)h$
i
®h$

i

¥h$
i

¥ξ*)"λ. (4.41)

It is noted that the inertia terms are neglected due to the fact that ηi 1 and
U$

i
®dx$

f
}dt*¯ 0. For the problem under consideration, since the flow moves in the

direction of the positive x-axis, sgn(U
p
)¯ 1 near the wave front. Obviously, the

condition (4.41) is satisfied. Then adding (4.39) and (4.40) gives

h$
i
®h$

i

¥h$
i

¥ξ*
¯ τ$

bi
(4.42)

which can be solved for h$
i

under some boundary condition if the basal shear stress τ$
bi

is known. A direct way is to solve (2.12), (4.40), and (4.42) for values of h$
i
(ξ ) and

h$
si
(ξ ), and details along these lines are shown in Huang & Garcı!a (1997b). However,

a rigorous way is used herein, in which the basal shear stress in a non-uniform flow
having a depth of h$

i
is derived. As shown in Appendix C, the basal shear stress near

the wave front is given by

τ$
bi

¯λ9 (n1) h$
i
U$

i

(2n1) h$
i
h$
si
®nh$#

si

:n, (4.43)

where U$
i

is given by (4.38), and h$
si

can be solved by (4.40). Therefore, it can be shown
that
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®λ

h$
f
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01®
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®λ}φ*
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1
(4.44)

where φ*¯ 1®¥h$
i
}¥ξ*. Equation (4.44) has only one unknown, h$

i
, and can be easily

solved for some boundary condition. Numerical inspection of (4.44) shows that
h$
i
U h$

f
as ξ*U®¢. This indicates that the inner solution matches the outer solution

correctly, i.e.

lim
x*−x$

f
U
!

h*¯ lim
ξ*U−¢

h$
i
¯ h$

f
. (4.45)
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F 9. Inner solution near the shock front.
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F 10. Comparison of inner solution with experimental results obtained
by Liu & Mei (1989).

The boundary condition required for solving (4.44) is the mass conservation
requirement (Whitham 1975), which can be written in the form

&!

−¢

(h$
f
®h$

i
) dξ*¯&

δ*

!

h$
i
dξ*, (4.46)

where δ* is defined in figure 9 as the distance between the kinematic-wave front and the
front nose in the inner solution. This requires that the two cross-hatched areas in figure
9 be equal.

When h$
f
¯λ, (4.44) can be integrated to yield

(ξ*constant) tan θ¯ h$
i
λ ln rh$

i
®λr (4.47)

which gives the depth of a three-dimensional mud-flow deposit along its centreline on
an inclined plane (Coussot et al. 1996) or the depth of a two-dimensional mud flow at
the threshold condition for motion downslope (Liu & Mei 1989). The constant in (4.47)
is determined by (4.46). When h$

f
"λ, the inner solution describes a two-dimensional

permanent gravity wave which spreads at a speed determined by (4.38) and has a free-
surface profile determined by (4.44) (Liu & Mei 1989). The free-surface profiles
computed from (4.44) are seen to agree very well with experimental results obtained by
Liu & Mei (1989) in figure 10. The mud they used had the following properties : ρ¯
1.106 g cm−$, τ

y
¯ 8.75 dyne cm−#, n¯ 1, and µ

"
¯ 0.34 g cm−" s−". The experimental

conditions are : (a) θ¯ 1.47°, U
i
¯ 5.22 cm s−", h

f
¯ 0.71 cm, h

y
¯ 0.31 cm, and

Re¯ 0.63; (b) θ¯ 0.90°, U
i
¯ 9.46 cm s−", h

f
¯ 1.22 cm, h

y
¯ 0.51 cm, and Re¯ 3.55.

4.4. Composite solution

The outer and inner solutions obtained in (4.10), (4.13)–(4.16), (4.44), and (4.46) are
in dimensionless form scaled by the variables in (3.1) and (4.30), and their validity is
restricted by (4.1). Thus, it is inconvenient to use these dimensionless solutions for
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F 11. Composite solution.

interpretation and numerical computations. This can be readily avoided by expressing
the inner and outer solutions in dimensional variables and noting that the length scales
l
o

and h
o

cancel out in the final result. The outer solution is then given by
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while the inner solution takes the form
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with the boundary condition given by
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(h
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) dξ¯&
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dξ, (4.54)

where φ¯ 1®(dh
i
}dξ)}tan θ, and ξ¯x®x

f
. Thus, a composite solution, h

c
, can be

obtained by adding the inner and outer solutions and subtracting their common
matching term, h

f
, as follows:

h
c
¯ hh

i
®h

f
O(ε}tan θ). (4.55)

The composite solutions are also plotted in figure 6, and should give more reasonable
descriptions of the physical problem than the outer solutions. Composite velocities are
obtained from (4.6) with h from (4.48) or (4.51). As shown by a computed result in
figure 11, the composite solution is as good an approximation in the outer region as
the outer solution, and it is as good an approximation in the inner region as the inner
solution. The validity of the composite solution uniformly over the whole runout
distance at this time is achieved through an overlapping region, hence there is no gap
between the two regions. The size of the inner region is characterized by the inner
scaling analysis and given by
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(a)

(b)

F 12. (a) Lateral view of Plexiglas tank used in the experiments, (b) mudflow front.

Cases
C

v

(%)
Bulk density, ρ

(g cm−$)
τ
y

(N m−#)
µ

n

(N m−# sn) n

(1) 22.13 1.365 17.86 21.30 0.24
(2) 21.07 1.348 14.10 10.20 0.34
(3) 19.59 1.323 9.96 7.10 0.38
(4) 17.11 1.282 6.40 6.40 0.29
(5) 14.24 1.235 2.91 1.70 0.36
(6) 13.05 1.215 2.21 0.22 0.75

T 2. Rheological measurements for kaolinite suspensions

x*®x$
f
¯O(®1) (4.56a)

or dimensionally as
x®x

f
¯O(®x

f
) (4.56b)

if h
o
¯ h

f
and l

o
¯x

f
are selected. The size of the overlapping region is characterized

by the matching (4.45) as
x*¯O(1) (4.57a)
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F 13. Rheological measurements for kaolinite suspensions. (See table 2 for parameters).

or dimensionally as
x¯O(x

f
) (4.57b)

if h
o
¯ h

f
and l

o
¯x

f
are selected.

Note that the composite solution in (4.55) increases suddenly from zero to the yield
depth at the upstream end of the flow. For flows without a retaining wall on the
upstream side, such a free-surface profile near the tail is not realistic. The mud near the
tail is in fact at the threshold condition after it just stops moving in the upstream
direction. Thus, the free-surface profile near the tail is governed by (4.39) and (4.40) in
which U

p
¯ 0 and sgn(U

p
)¯®1. These two equations then give the following

differential equation:

h
i

¥h
i

¥ξ
¯ (h

i
h

y
) tan θ (4.58)

in which ξ¯x. The fluid depth increases from zero to the yield depth near the tail as
described by (4.58).

4.5. Experiments

A set of laboratory experiments to check the theoretical model was conducted. The
experiments were carried out in a tilted Plexiglas tank (figure 12), which is 30 cm wide,
100 cm long, and 6 cm and 22 cm deep at the upstream and downstream ends,
respectively. A 10 cm long reservoir is located at the upstream end, behind a sliding
gate. Kaolinite was well mixed with tap water by using a blender, then the suspension
was poured into the reservoir. A mud sample was taken, after each experiment, to a
Bohlin constant-stress rheometer to measure its rheological properties at the
experimental temperature. With a certain volume of mud suspension in the reservoir,
a mud flow was generated by suddenly pulling out the gate. A digital video camera was
used to capture the spreading flow from above at a rate of 30 frames per second. The
rate of spreading was obtained with the help of a 1¬1 cm# grid system marked on the
bottom of the tank. A laser displacement sensor was mounted above the tank to obtain
hydrographs at a certain gauging station. Free-surface profiles were recorded for slow
flows by placing a thin stainless steel ruler along the centreline into the mud flow and
pulling the ruler out quickly. This was performed manually and took about 0.1 s.

In the experiments, the Herschel–Bulkley model was found to give the best fit to all
rheological measurements as shown in figure 13 and table 2. The yield stress was
obtained by extrapolating the experimental shear stress–shear rate data at zero rate of
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F 14. Measured apparent viscosity varying with rate of shear (¬) and applied shear stress
(). Yield stress is that below which the apparent viscosity tends to infinity.
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shear. The extrapolated yield stress can be checked by a logarithmic plot of the
apparent viscosity and shear stress or rate of shear, in which the yield stress is found
as the lower stress limit at which the apparent viscosity tends to infinity (figure 14).

With measured values of τ
y
, µ, n, ρ, and the channel slope θ, the spreading rate of

a fixed-volume release and the free-surface profile of the resulting mud flow can be
computed from (4.48)–(4.55) and (4.58), and then compared with the measurements.
Reasonable agreement between theory and experiments was observed for all runs, and
typical results are shown here. Figure 15 shows the free-surface profiles for the
following conditions: (a) C

v
¯ 21.07%, θ¯ 18.5°, A¯ 29.2 cm#, and Reynolds

number Re¯ ρu#−n hn}µ
n
¯ 0.30; (b) C

v
¯ 19.59%, θ¯ 24.5°, A¯ 32.4 cm#, and

Re¯ 0.11. Figures 16 and 17 show the spreading rate and hydrographs, respectively,
for the following condition: C

v
¯ 13.05%, θ¯ 11°, and A¯ 24.7 cm#. As expected,
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F 18. Free-surface profiles of mud flows on a slope.

the theory agrees asymptotically well with the observed spreading rate and free-surface
profiles.

5. Impact of shear thinning on runout characteristics

To further examine the impact of the shear-thinning phenomenon on mud flows and
their final deposits, free-surface profiles of mud flows on a slope are computed by using
(4.50), (4.51), (4.53)–(4.55), and (4.58) and shown in figure 18, in which the mud flows
are assumed to have a constant volume of A¯ 1.0 m# and to originate from a
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F 19. Shear-thinning impact on the runout characteristics of a mud flow from a constant-
volume source: Herschel–Bulkley model shown as solid lines and Bingham model shown as dashed
lines. Rheological data are from table 1, cases (1) and (2). Squares represent the validity boundary.
(a) Shock depth versus shock coordinate, (b) shock coordinate versus time, (c) shock velocity versus
shock coordinate.

certain upstream source. Four free-surface profiles are compared with each other : (i)
h
y
¯ 0.02 m and n¯ 1; (ii) h

y
¯ 0.04 m and n¯ 1; (iii) h

y
¯ 0.02 m and n¯ 0.6; and

(iv) h
y
¯ 0.04 m and n¯ 0.6. These profiles have the same h

f
(¯ 0.10 m) and are

spreading down a slope of tan θ¯ 0.1. It is seen that for a fixed n, the flow with a large
yield depth has a shorter spreading distance and thicker flow depth away from the wave
front than that with a small yield depth. If the free-surface profile of a large-yield-stress
flow is translated downstream with the leading edges of the fronts coinciding, the flow
with a larger yield depth seems to have a lower and flatter wave front than that with
a smaller yield depth. It is also seen that for a fixed h

y
, the flow with a small value of

n has a shorter spreading distance and thicker flow depth away from the wave front
than that with a large value of n. If the free-surfaces profile of a small-n flow is
translated downstream with the leading edges of the fronts coinciding, the small-n flow
seems to have a lower and flatter wave front than the large-n flow. For spreading mud
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flows, small values of n seem to have the effect of enlarging yield depth, and this is
because n is associated with a sheared flow as indicated in figure 2. However, as far as
the final deposit after flow stoppage is concerned, for the same amount of mud, the
mud flow with a small yield depth always has a longer runout distance than that with
a large yield depth.

The impact of the shear-thinning phenomenon on runout characteristics is
apparently obvious but actually complicated, since the shear rate always increases from
a minimum of zero at the yield interface to a maximum at the bottom over cross-
sections in the history of a mud flow. The local fluid slightly below the yield interface
definitely experiences shear thinning, and the local fluid far below the yield interface
may experience little shear thinning. During the final decelerating stage, all sheared
fluid may experience shear thinning. Herein, this impact is examined in figure 19 by
considering two mud flows whose measured rheological data are fitted by the Bingham
and Herschel–Bulkley models (see table 1). Our intention here is to compare the two
rheological models to see the shear-thinning impact on runout characteristics of mud
flows, so any other problems related to small-scale flows are outside the scope of this
paper. It is seen that the shear thinning seems not to have much impact on the runout
characteristics during early time stages, but does have great impact on runout
characteristics during the final decelerating stage as well as on the final deposits. This
impact is found to be greater for severe shear-thinning mud flows than for mud flows
experiencing slight shear thinning. A Bingham model can provide roughly good results
for the runout characteristics of mud flows at the early time stages, and this is
contingent on the quality of the fitting of a Bingham model to measured rheological
data. Therefore, for highly concentrated mud flows, the Herschel–Bulkley model seems
to be a better choice.

6. Summary and application considerations

A formulation has been presented for the dynamics of a two-dimensional, unsteady,
laminar, high-density mud flow resulting from a constant-volume mud source on a
relatively steep slope (e.g. a mud-slide problem). The Herschel–Bulkley model is chosen
to describe the yield-stress, shear-thinning behaviour of the dense mud, and the
Newtonian model, power-law model and Bingham model can be treated as special
cases of the Herschel–Bulkley model. The boundary-layer approximations with an
O(η) error are adopted for the flow shortly after its initiation. Physical scaling analysis
shows that the kinematic-wave approximation can provide accurate results for the
spreading characteristics of low-Reynolds-number flows, having an O(ε}tan θ) error
after the wave front has advanced a distance h

f
}ε downstream. To improve the free-

surface profile near the wave front and hydrographs, further physical scaling analysis
shows that the longitudinal pressure gradient term is also important in the region near
the wave front. The method of matched-asymptotic expansions is implemented to get
asymptotic solutions for the outer region away from and inner region near the wave
front, and a composite solution is obtained through a successful matching of the inner
and outer solutions, having an O(ε}tan θ) error. The solution depends asymptotically
only on the initial mass volume but not on the initial mass distribution, by the fact that
the solution for the mud flow originating from a point source is found to be, for the
same amount of mud, asymptotically identical to that for the flow from a finite-size
source in a dam-burst problem. The flow model can be readily adapted to submarine
non-hydroplaning mud flows under deep-water conditions (van Kessel & Kranenburg
1996; Huang & Garcı!a 1998).
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A mud flow of the Herschel–Bulkley type only spreads a finite distance downslope
and stops at an equilibrium mud depth with bottom shear stress equal to the yield
stress. A large yield stress determines a short runout distance and greatly slows down
the flow. The propagation speed of the wave front asymptotically falls to zero, and the
final stage of the flow is similar to a creeping motion. The impact of shear thinning on
the runout characteristics and final deposit of mud flows is examined. Small values of
the flow index (0! n% 1) seem to have the effect of both thickening the plug layer
of the flow and greatly slowing down the flow. A mud flow with shear thinning in
low-shear-rate range may spread far downslope beyond the runout extent estimated
by a Bingham model and has a long and thin deposit.

Our experimental results and those of many others have been compared with
computational results in different aspects of the theory. The theory is seen to agree well
with the experimental results : spreading rate of Newtonian flow (Huppert 1982a), free-
surface profiles of Newtonian flow (Hunt 1994) and Bingham flow (Liu & Mei 1989;
Huang & Garcı!a 1997a, b), and spreading rate and free-surface profiles of
Herschel–Bulkley flow in this study. However, it should be noted that the exact shape
of the front itself is influenced by the line of contact between two fluids (i.e. mud and
air for subaerial flow) and the rigid surface (Greenspan 1978; Hocking 1981), and this
is indicated by the curling over at the front tip in figure 12.

The analytical solution is asymptotically valid after the wave front has advanced a
certain distance downstream. For mud flows on a slope of 5°, typical of continental
slopes, the validity requires that the ratio of the characteristic flow depth to the
characteristic flow length be equal to or less than 0.0044 in order to obtain an accuracy
within about 5%. This implies that the solution can be used to predict deposits of mud
flows which have substantial runout distances (Hampton et al. 1996). Although the
analytical solution is for two-dimensional mud flows, many flows in nature can be
treated simply as two-dimensional if the lateral length scale is many times larger than
the vertical length scale (Whipple 1997). To estimate the risk of a future mud flow on
an alluvial fan, as an example, the rheological parameters (τ

y
,µ

n
, n) can be estimated

from field surveys or extrapolated}interpolated from rheological measurements in the
literature (e.g. Coussot 1997).

More efforts are worthwhile. Comparisons of the solution with both physical
(laboratory and field) and numerical results are needed to make a definite statement
about the accuracy of the asymptotical solution under other various initial conditions.
There must be situations where sediment entrainment and deposition occur, thus
entrainment and deposition mechanisms could be included into the model, which
would bring in the possibility of self-acceleration.
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Appendix A. Approximate equations of motion away from the wave front
(outer region)

Here the approximate equations of motion in the outer region are derived, through
a scaling process, from the full Navier–Stokes equations. The order of magnitude of
the physical scaling is discussed by introducing the following normalizations:

x¯ l
o
x*, y¯ h

o
h*, p¯ p*ρgh

o
cos θ, (A 1a)

u¯ u
o
u*, �¯ u

o
(h

o
}l
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where h
o
, l

o
, and u

o
are the characteristic depth, longitudinal length and longitudinal

velocity scales, respectively, in the outer region. Thus the normalized continuity and
momentum equations are
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where η¯ ε}tan θ, ε¯ h
o
}l

o
as defined in (3.1), Re is the Reynolds number defined by

(3.11), and [(2n1)}n]nCO(1) because 1.2% [(2n1)}n]n% 3 for 0.1% n% 1.
The boundary conditions without external stresses and surface tension are

u*¯ �*¯ 0 at y*¯ 0, (A5)

�*¯
¥h*

¥t*
u*

¥h*

¥x*
at y*¯ h*, (A6)

p*
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η 02n1
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®p*02n1

n 1n0τ$yy®τ$
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¥h*

¥x*1 η tan# θ¯ 0 at y*¯ h*. (A8)

For a slender flow on a very mild slope, it is assumed that

εi 1, tan θ%O(ε), η&O(1), Re%O(1}ε). (A 9)

By expanding all unknowns u*, �*, τ$
xx

, τ$
xy

, τ$
yx

, τ$
yy

, p*, h* in powers of ε, it is readily
found that (2.1)–(2.7) represent the leading-order equations and boundary conditions
of the physical process, with an error of O(ε#). In this case, the inertia terms can be
neglected with an error of O(ε) or O(ε#) when ReCO(1) or ReCO(ε), respectively.

Herein, a slender flow on a relatively steep slope is considered. The slope is assumed
to be so steep that both tan θ%O(1) and ε}tan θi 1 are easily satisfied. Thus, under
the conditions

ηi 1, tan θ%O(1), Re%O(1}η tan θ), (A 10)

it can be easily shown that (2.1)–(2.7) represent the leading-order equations and
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boundary conditions of the physical problem and that the longitudinal pressure
gradient term is negligible, with an error of O(η). In this case, the inertia term is
negligible when Re%O(1}tan θ).

Appendix B. Derivation of equation (4.31)

Substituting (4.30a) into (3.4) and use of the chain rule, gives
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Differentiating ξ*¯ (x*®x$
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)}η with respect to t* gives
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which, when substituted into (B 2), yields (4.31) as
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Appendix C. Derivation of (4.43)

From (4.39) and (4.40), we have

®
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which is subjected to the boundary conditions (2.4), (2.5), (2.7) and (2.8). It is not
difficult to prove that
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Differentiating (C2) at y¯ 0 and use of (C 3) yields
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which then gives, when substituted into (1.1),
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